(接上期)
采用I-Lock技术进行螺纹车削
当提到在螺纹车削中产生的问题,可转位刀片的微位移被认为是事故常见原因之一。 切削刃在切削过程中的轻微移动往往会导致过早缩短的刀具寿命、无性能一致性和不能令人满意的加工效果。
但是,最近刀片技术有了新的突破,找到了使刀片精确定位在刀柄上的方法,已经实现了切削刃稳定性的惊人改变。该项突破为更硬、更耐用的刀片材质开启了一扇大门,可靠地缩短了加工循环时间。
在螺纹车削中,导致性能不佳和加工结果不理想的许多问题通常起因于对常见金属切削基本因素的疏忽,例如:刀具悬伸的最小化、刀具稳定性的最大化、切削刃的对中、最适合切削参数的应用以及选择最适当的刀具和加工方法等。螺纹车削的其他具体问题包括每次走刀的切削深度、径向进给的不同方法以及为获得足够大的刃后角所需的刀片倾斜角,这需要根据螺纹齿距和直径以及螺旋升角来确定。
作为螺纹最典型的特点,螺纹牙形和齿形误差是螺纹加工中导致质量不合格的最常见原因,也可能是由于公差或表面粗糙度不合格所导致。 当出现这种情况时,切削刃的使用寿命通常是过早地结束了。到目前为止,形成不正确螺纹牙形的主要原因之一是刀片在刀柄上缺乏稳定性。 刀片的微移动也会带来一些不利后果而导致刀具寿命缩短,其中一个主要的后果就是切削刃的崩刃,特别是在刀尖半径处。通过选择替代的夹紧螺钉,例如通常必须用U型螺钉代替快换螺钉,可以在一定程度上改善稳定性。 但是直到目前,仍然难以解决刀片在刀片座上的完全固定。
第二个因素是螺纹车削中每次走刀的开始和结束,这意味着切削力的大小和方向有突然的变化。 这些是加工工序过程中最敏感的移动,同时容易受到刀片位移风险的影响。刀片上螺纹牙形的尖端与螺钉形成一个杠杆,迫使切削刃轻微地改变位置并且使刀片槽里的支撑点变形。 在螺纹车削的过程中,在每次走刀的开始和结束时产生交变的轴向力,在切入后和切削中平衡抵消。这种交变轴向力从不同方向作用在刀片上,产生刀片来回移动的趋势。
第三个因素,螺纹类型的任何变化意味着切削力在大小乃至方向上的变化,但是刀片尺寸没有必要随着螺纹牙形的变化而变化而在刀片座提供不同的支撑程度。 而且相同的刀片尺寸会有不同的螺距,这意味着大螺距的刀片并不比小螺距的刀片具有更多的支撑。如果刀片尺寸随着螺纹牙形和螺距的变化而变化,那么刀片和刀柄的规格将不得不变得超乎想象的多。
因此,切削刃位移的主要后果是产生螺纹超差和刀片切削刃线的微小崩裂。如果在加工出不合格的螺纹牙形后仍不停止使用刀具,那么刀具磨损将更快加剧。由于切削刃发生磨损,刀片会承受更大的切削力而因此进一步的位移,从而加速故障的发生。 事实上,因位移而导致更换刀片的情况比因实际刀片磨损而更换的情况更多。就工序中的螺纹质量一致性而言,切削刃的精确定位是极为关键的。
刀片定位的另一方面就是可重复性。为了避免耗时的机床设置以及尽量减少或消除报废零件的产生,刀片在刀柄中的简易而精确的定位是很重要的。 通常情况下,应尽可能地不要在走刀的过程中进行刀片转位以避免产生螺纹面的接刀。 如果在走刀的过程中需要进行刀片转位,那么刀片的精确定位对于保持和实现可接受的加工结果是关键。 与此相结合,考虑到机床停机时间的影响,在两次走刀之间的快速而简易地进行刀片转位也很重要。
螺纹车削的生产效率在很大程度上与螺纹车削刀具完成螺纹齿形所需的走刀次数相关。 如果走刀次数太多,再加之切深不足,会造成过度的刀具磨损和摩擦热,从而导致快速的后刀面磨损和塑性变形。 小切深也经常对切屑形成造成不利的影响,生成薄而难以控制的切屑。 较少的走刀次数需要更大的切削深度,但是切削刃要承受更多的载荷。 通过优化走刀次数,缩短了加工全螺纹所需的时间并改善了切削刃的吃刀量。 大切深产生更高的切削力,从而增加刀片在刀座中发生位移的趋势,这也再次强调了刀片可靠定位的必要。
螺纹的另外一个典型特点是螺距,在某些情况下它可能是导致零件出错的原因。 大多数螺距错误来自数控误差,而当机床、控制单元、设置和编程任何误差已经被消除时,就能够对可转位刀片在刀柄中的稳定性以及刀具横向进刀方式对螺距的影响进行评估。 螺纹的螺距是一个零件设计的要素,通常情况下细牙螺纹对公差要求更严格,就切削而言由于单位毫米或英寸上更少的螺纹数量(进给率),加工细牙螺纹需要花费更长的时间。但是,螺距越大越需要高的进给率和产生更大的切削力,这也需要非常稳固的刀片定位。
由于螺纹车削中切削刃的易损性,刀片需要尽可能硬并且耐磨,同时不易脆裂,在加工过程中无崩刃风险。现代加工中,切削刃尖部位产生大量的切削热,迫使刀具必须具有抗塑性变形的能力,发生塑性变形后随之而来即是快速后刀面磨损,若继续使用同一的切削刃,则会出现刃口崩裂。 切削刃遭受塑性变形是螺纹车削中通过切削<