人类认识和使用钻头的历史可以上溯到史前时代。燧人氏“钻木取火”所使用的石钻,可以看作最原始的钻头。现代工业加工中广泛使用的麻花钻(俗称钻头),是一种形状复杂的实工件孔加工刀具,诞生于一百多年前。现在,全世界每年消耗的各类钻头数以亿计。据统计,在美国的汽车制造业,机械加工中钻孔工序的比重约占
人类认识和使用钻头的历史可以上溯到史前时代。燧人氏“钻木取火”所使用的石钻,可以看作最原始的钻头。现代工业加工中广泛使用的麻花钻(俗称钻头),是一种形状复杂的实工件孔加工刀具,诞生于一百多年前。现在,全世界每年消耗的各类钻头数以亿计。据统计,在美国的汽车制造业,机械加工中钻孔工序的比重约占50%;而在飞机制造业,钻孔工序所占的比重则更高。尽管钻头的使用如此广泛,但众所周知,钻削加工也是最复杂的机械加工方法之一。正因为如此,人们一直致力于钻头的改进和钻削过程的研究。本文根据所能得到的英文文献资料,对两沟槽麻花钻的有关技术问题及钻削研究的历史、现状和发展趋势进行综述。
1.研究的主要领域和技术问题
近几十年来,人们关于钻头和钻削的研究除了钻头制作材料的改进以外,主要集中在以下五个方面:
①钻头数学模型和几何设计研究:包括螺旋沟槽、后刀面、主刃和横刃数学模型的建立,横向截形与钻尖结构参数的优化,切削角度(分布)的计算与控制,钻头结构的静态和动态特性分析,钻尖几何形状与切削和排屑性能关系的研究。
②钻头制造方法研究:包括钻头几何参数与后刀面刃磨参数之间关系的建立与优化,钻头制造精度和刃磨质量的评价与制造误差的测控,钻头螺旋沟槽加工工具截形的设计计算,钻头加工设备特别是数控磨床与加工软件的开发等。
③钻削过程与钻削质量研究:包括影响钻削过程的各种因素及出现的各种物理现象的分析、建模与监控(如钻削力、切削刃应力和温度分布的测量、建模和预报);钻头磨损、破损机理与钻头寿命的研究;钻头的变形、偏斜、入钻时的打滑和钻尖摆动现象的研究;钻削工艺(如振动钻削、高速钻削、深孔钻削、钻削过程的稳定性等)与钻削质量(孔的位置精度、直线度、表面粗糙度、圆柱度、直径、孔口毛刺等)的研究。
④钻削机理与各种高性能钻头(如群钻、枪钻、干切削钻头、微孔、深孔钻头、长钻头、可转位钻头、合成材料加工用钻头、木工钻头、多螺旋槽钻头等)的研究。
⑤钻削过程模型验证和钻头性能评估过程的自动化,切削条件及钻头形状选用数据库和知识库的建立等。
目前,最具活力的研究领域是钻头数学模型、几何设计和制造方法(设备)的研究,钻削过程建模与钻削质量的研究等。
2.钻头数学模型与几何设计研究
2.1钻头的数学模型
建立钻头的数学模型是对钻头进行几何设计、制造、切削性能分析和对钻削过程进行建模的基础。第一个钻头数学模型由Galloway D F于1957年提出。他推导了直线刃钻头前刀面的参数方程,给出了主刃前、后角和横刃斜角的定义、计算公式和测量方法,提出了“把钻头后刀面作为钻头在刃磨过程中与砂轮相互作用后形成的磨削锥的一部分”的观点。20世纪70年代初期,Fujii S等人对Galloway D F提出的模型进行了进一步研究,提出采用割平面法,将三维空间曲面后刀面化为二维平面曲线进行分析,并开发了一个麻花钻计算机辅助设计程序。1972年,Armarego E J A和Rotenbery A发现:后刀面锥面刃磨法有4个独立的刃磨参数,而一般给出的钻尖几何参数只有3个,因此不能唯一确定钻尖后刀面形状和刃磨参数。为此,他们提出用后刀面尾隙角作为补充几何参数,以获得刃磨参数的唯一解。1979年,Tsai W D和Wu S M证明:锥面钻头、Racon钻头、螺旋钻头和Bickford钻头等的后刀面都可以用二次曲面来表示,并提出了表示钻头几何形状的综合数学模型,该模型可用于控制刃磨过程。1983年,Radhakrishnan L等人提出了十字钻尖钻头后刀面的一个数学模型。他们将后刀面分为第一后刀面和第二后刀面:对第一后刀面,以Tsai模型为基础,建立了一个改进的锥面模型;对第二后刀面,建立了一个平面模型。Fugelso M A则提出了圆柱面钻尖的数学模型。1985年,Fuh K H等人建立了一个用二次曲面表示的钻头后刀面数学模型,以便用计算机将其设计成椭球面、双曲面、锥面、圆柱面或它们的任意组合。
长期以来,人们一直将麻花钻的主刃设计为直线。1990年,Fugelso M A发现,由于要求锥面麻花钻的主刃为直线,使靠近钻芯处的主刃后角变得过小,如果在刃磨之前,将钻头绕自身轴线旋转5°~10°,就可以解决这一问题,只是主刃将变得微微弯曲。同年,Wang Y将主刃看作曲线,利用多项式插补方法建立了钻头螺旋前刀面的几何模型。1991年,Lin C和Cao Z提出了一种适合于直线和曲线刃,采用锥面、柱面和平面后刀面的麻花钻综合数学模型。1999年,Ren K C和Ni J提出用二项式表示