新一代立式加工中心的设计原则如下:
1、在速度和精度方面达到国际同类型同规格产品的先进水平,同时兼顾强力切削,满足用户一机多用的目的;
1)高刚性结构设计,保证机床设计寿命长;
2)产品模块化设计,降低设计成本,形成不同配置的系列产品;
3)高精度设计,满足μ级加工精度的需要;
4)高效率设计,满足现代高生产率的要求;
5)注重环保。
2、主要技术参数确定
根据市场调研确定作为标准配置。μ1000系列的工作台面尺寸为500mm×1200mm;坐标行程X、Y、Z分别为1000mm、560mm、550mm;主轴功率18.5/22KW,主轴转速15,000r/min,BT40刀柄;换刀时间(刀到刀)1.5s,最大刀具重量7kg,刀库容量24把;快速移动速度X、Y、Z分别为48m/min、48m/min、36m/min;全闭环情况下定位精度≤0.008mm,重复定位精度≤0.004mm(执行GB/T8771.4标准)。
作为系列产品和选用配置,五轴联动控制时配两轴数控转台,工作台面尺寸为500mm,坐标行程X、Y、Z分别为500mm、500mm、415mm(五轴时);主轴转速12,000r/min、20,000r/min任选,刀柄可选择HSKA63。
3、设计过程
机床设计从常用的功能设计进一步发展为机床结构的刚度设计、精度设计、高速化设计、误差补偿技术、寿命设计和可靠性设计等现代先进机床设计技术。为了实现精密机床设计要求,在机床设计中对各方面进行了综合考虑。为保证机床结构设计的合理性,对基础件、传动系统、主轴及整机都进行了有限元分析,找出设计的薄弱环节加以改进,对机床整体性能优化和高刚性设计起到很好的指导作用。
在设计开发过程的初期,初步设计了外形尺寸和工作区范围相同而结构不同的四套方案,即:定梁顶置滑枕式、定立柱十字工作台式、横梁滑座式和定立柱三坐标单元式四种结构。通过有限元刚度分析和加工误差分析,得出方案1(即定梁顶置滑枕式)的刚度是最大的,且误差分配也比较合理,所以在实际设计中选择了方案1。按方案1的结构进行了机床整机和部件的设计,并且根据设计图对机床整机和部件进行了有限元分析和结构参数改进,避免薄弱环节的出现。结论如下:与同类的立式加工中心相比,这台机床在各个方向的刚度都具有较大的优势,综合当量刚度约提高40%至两倍以上,并且三个方向的刚度值较均匀(见表1)。
表1 与类似规格加工中心的刚度计算值比较
机床名称X向刚度
Kx(N/μm)Y向刚度
Ky(N/μm)Z向刚度
Kz(N/μm)三向综合当量刚度
K(N/μm)
其它类似加工中心A 46.6 46.8 53.7 48.7
B 32.3 50.0 95.9 45.2
C 20.4 37.2 59.1 29.7
D 32.3 65.1 118.2 48.7
E 31.2 34.2 39.7 34.5
μ1000 59.7 64.9 92.9 68.7
由计算结果可知,机床整机的整体性能优良,机床静态刚度显着提高,可以满足高速、高精、高效的要求。这种布局结构的优点是:床身、立柱分体,且主要构件均呈箱形结构,加工中不易变形,加工工艺性好;结合面较大,基础稳固,主轴悬伸小,整体结构刚度高;左右完全对称式设计,主轴X向热平衡较好;Y向悬伸小,热变形影响小;X、Y、Z轴移动部件轻,加速性好;构件结构稳固易于保证导轨运动精度,精度稳定性好。
为保证机床的精度稳定,床身、立柱、滑座、主轴箱等都采用有限元分析,应用高阻尼性能的优质铸铁制造;合理的截面设计和筋格布置,尽量避免行程中出现不合理的悬臂状态;导轨采用高刚性滚柱导轨,安装基面精密刮研。μ1000系列机床打破通常机床结构形式,床身采用三点支撑,高刚性设计,使机床调整简单,不依赖于地基,机床可不需特殊地基而直接安装在水泥地坪上。床身用基于无弯矩的力流原理的特殊筋板设计,保证其上构件在运动过程中,负载重心和切削点始终不离开三点支撑的范围,并有足够的支撑刚度,有利于保持精度的稳定。
滑座采用顶置式结构,其特点为高刚性轻型设计,使运动单元灵活,适应高速要求。滑座沿立柱导轨作X向运动,加长导轨支撑长度,运动时滑座始终不离开导轨,易保证直线度、定位精度和加工精度。工作台只作单方向(Y向)移动,与十字工作台结构相比移动部件轻,且承重大,设计承重大于800kg。另外工作台沿导轨方向运动,结构刚性好,运动精度高,避免了传统机床工作台移动到两端後直线度降低或超差问题。扁长的主轴箱结构,使主轴重心尽量靠近X向导轨,主轴中心与导轨距离295mm,比传统机床减少五份之二,这样主轴悬伸小,受弯矩小。另外导轨安装在主轴箱上,滑块在滑座上,大大增强了Z向刚性,提高了加工精度和运动稳定性,定位精度高。采用了宽度较大的滚柱导轨,中等预载荷消除了间隙和爬行,提高系统刚度和运动精度。
线性轴驱动采用伺服电机带动高速滚珠丝杠副,它采取预紧式单螺母形式,结构紧凑。丝杠的支撑采用两端固定支撑并施加预拉伸,以提高传动系统刚度,吸收丝杠发热引起的热伸长造成的误差。丝杠与电机间的联轴器选用波纹管形式,其优点是:传动效率高、刚性好、传递扭矩大、扭转刚度高,且自身转动惯量小,适应高速性。适当增加座的长度以增加螺母座及丝杠轴承座与基础件间结合面刚度,同时工艺上采取配刮研技术,使精度直接进入稳定期,提高耐冲击能力。
高刚性内装式电主轴,前轴承选用中预载的四列背对背高速角接触陶瓷球轴承,轴承内径?70,这种组合方式使轴承可同时承受径向和轴向载荷,主轴动静刚度高。
为了减少冲击、提高定位精度,控制系统设定了钟型加减速功能和HRV(High Response Vector)控制功能,调整了影响动态性能的位置和速度增益。同时,为了实现长寿命设计,设计中对一些影响精度和工作性能的关键部件采取了相应措施,如:由于主轴轴承用油气润滑,部分油气会进入电机定子与转子之间,使电机被污染而影响使用性能和寿命,为了克服这一点,在电机前後端均有低压乾燥清洁气体吹入,局部形成轻微正压,以防止油气进入,保证电机性能稳定,寿命长;为避免主轴前端有脏物进入轴承,并防止轴承油气润滑的废油渗出到主轴端面上,主轴最前端加一路气,以防止脏物进入和吹散废油;五轴联动的转台电机直接运动于工作区时,脏物可能进入电机,影响寿命,为此,转台上两个电机罩均加有低压气体吹气,形成正压,阻止异物侵入;为了保证光栅长久保持精度,提高使用寿命,光栅的读数头上也有乾燥清洁的空气吹入。
为了保证高精度,多种措施被采用以减少机床的热变形和振动。如主轴套筒和前後轴承座恒温循环冷却,油气润滑减少轴承发热,後轴承使用圆柱滚子轴承,一旦发生热变形,主轴就向後伸长,不影响加工精度;大流量冷却刀具和工件,减少切削热产生;床身上两个螺旋排屑器及时将切屑排出机体,避免切屑大量堆积引起床身热变形;机床对称式设计,平衡热变形等;主轴具有中心内冷却功能,内冷最大压力为22bar,可满足高速切削、小孔加工和深孔加工对排屑畅通、及时带走加工热量的要求。
为了使主轴运转平稳,降低噪声,减小振动,对主轴采用两次动平衡,一次在主轴与转子热装後,第二次在所有回转零件装配好且几何精度检验完毕後。这样动平衡精度高,保证回转精度和防止振动。另外,在主轴前後位置设计有平衡环以备在线动平衡用。刀库放在机床的左侧面,用单独地基,这样在刀库和机械手换刀时产生的振动和不平衡不会传到主机上,消除了一部分外加载荷,使机床精度更稳定。
为了在较高的运动速度下提高机床的定位精度和加工精度,特别是定位精度,机床上安装了精度为0.003mm的HEIDENHAIN封闭式绝对光栅尺,进行全闭环控制。但机床的定位精度只能评估机床在特定位置时的精度,如果远离测量面进行加工时,加工的位置度会有较大误差。而传统的螺距补偿只能对特定位置丝杠的螺距误差进行补偿,并不能全面降低整个加工面的位置度误差。为尽量消除加工区域内的位置度误差,提高机床的加工精度,增加了空间误差补偿功能,通过大量的试验采集数据,计算出机床在各空间点的几何误差,并通过CNC系统给与实时补偿。
主轴在运转过程中,电机、轴承及其它运动部件会因摩擦、损耗等产生热量。如果热量不能及时散发和排出,则会严重影响机床精度。因此,对主轴电机外套和轴承座外套用通过恒温油的方式进行循环冷却,使主轴运转过程中绝大部分的热量随循环油带出机体,以降低热变形。但是,冷却再完善也仍然会有部分热量因传导速度快而不能及时排出,使主轴产生热变形。为了进一步解决主轴热变形对精度的影响,主轴Z向的热变形可用软件补偿的办法进行了补偿。补偿数据是通过实验获得的。为了使补偿软件更具有通用性,变量编程被采用,针对不同的机床、不同的使用情况分别给这些变量赋值,便可生成具针对性、实用性的补偿程序。
机床的三点支撑结构,便于根据生产线需要调整位置实现快速重组,缩短了机床安装调试周期,节约了调整工时。全封闭防护罩确保高速、高效加工条件下工人操作安全。使用油水分离器,将冷却液中油物分离过滤掉,延长冷却液的使用寿命,提高冷却液使用效果,并且符合环保要求。μ1000系列立式加工中心应用范围很广,机床为精密级加工中心,各项精度包括几何精度、加工精度均为国家标准的精密级,而定位精度比精密级还提高一倍。设计的高刚性在满足高精度的前提下,还有很强的切削能力。应用范围如下:汽车的发动机缸体缸盖、制动器、变速箱体、转向节、减速器等零件的大批量生产和加工;纺织行业板类零件加工;油泵油嘴行业、制表行业、模具行业等的开关体、阀体、叶片、叶轮等零件和模具的加工。