提高加工质量和工效,充分满足产品生产的要求是制造技术发展永恒的主题。迄今为止,所有制造技术的研发、改进和创新,无一不是直接或间接地在此主题的驱动下进行的,五轴加工机床的产生、应用和发展也不例外。它既是为了加工某些具有特殊要求的复杂形面的大型工件而出现的,也是为了提高对这些形面的加工精度、质量和工效才得到应用和发展的。所谓五轴加工这里是指在一台机床上至少有五个坐标轴(三个直线坐标和两个旋转坐标),而且可在计算机数控(CNC)系统的控制下同时协调运动进行加工。这样的五轴联动数控加工与一般的三轴联动数控加工相比,主要有以下优点:
1、可以加工一般三轴数控机床所不能加工或很难一次装夹完成加工的连续、平滑的自由曲面。如航空发动机和汽轮机的叶片,舰艇用的螺旋推进器,以及许许多多具有特殊曲面和复杂型腔、孔位的壳体和模具等,如用普通三轴数控机床加工,由于其刀具相对于工件的位姿角在加工过程中不能变,加工某些复杂自由曲面时,就有可能产生干涉或欠加工(即加工不到)。而用五轴联动的机床加工时,则由于刀具/工件的位姿角在加工过程中随时可调整,就可以避免刀具工件的干涉并能一次装夹完成全部加工;
2、可以提高空间自由曲面的加工精度、质量和效率。例如,三轴机床加工复杂曲面时,多采用球头铣刀,球头铣刀是以点接触成形,切削效率低,而且刀具/工件位姿角在加工过程中不能调,一般就很难保证用球头铣刀上的最佳切削点(即球头上线速度最高点)进行切削,而且有可能出现切削点落在球头刀上线速度等于零的旋转中心线上的情况。这时不仅切削效率极低,加工表面质量严重恶化,而且往往需要采用手动修补,因此也就可能丧失精度。如采用五轴机床加工,由于刀具/工件位姿角随时可调,则不仅可以避免这种情况的发生,而且还可以时时充分利用刀具的最佳切削点来进行切削,或用线接触成形的螺旋立铣刀来代替点接触成形的球头铣刀,甚至还可以通过进一步优化刀具/工件的位姿角来进行铣削,从而获得更高的切削速度、切削线宽,即获得更高的切削效率和更好的加工表面质量。
随着科技的发展和人们物质生活水平的提高,人们对产品的性能、质量要求也更高,形式更多样化和个性化。为了进一步提高产品的性能和质量,充分满足使用者的多方要求,如节能、省材、轻便、美观、舒适等,现代产品,不仅是航空、航天产品和运载工具(如汽车、船、舰等),而且也包括精密仪器、仪表,医疗、运动器械,以及家用、办公用的电器和儿童玩具等产品的零件,都愈来愈多地采用由整体材料镂铣而成,而且其上还包含有许多各种各样的复杂曲面和斜孔、斜面等。这些零件,如用传统机床或三轴数控机床来加工,必须用多台机床,经过多次定位安装才能完成。这样不仅设备投资大,占用生产面积多,生产加工周期长,而且精度、质量还难于保证。为了解决这些问题,就要发展能集中工序进行高精、高效和复合加工的机床,以期能实现工件一次装夹便可完成全部或大部分加工。这已成为当今机床发展的大趋势,而配备上高速加工能力的五轴机床,完全符合这一发展要求的趋势,而且还可能是最佳的方案选择。因为它不仅具有现代生产加工设备所要求具有的主要功能,而且一台五轴机床的工效约相当于两台三轴加工机床,甚至可以省去更多机床。
五轴加工机床与一般机床的最大区别在于它除了具有通常机床的三个直线坐标轴外,还有至少2个旋转坐标轴,而且可以五轴联动加工。而五轴加工机床之间的区别,除了有立式、卧式之分外,则主要还在于他们实现五轴运动的结构型式和五个运动的分配(配置)上。一般而言,五轴机床有三种结构型式和三种运动配置方式,这两者的组合,就可以得到有9种可能的五轴机床的结构类型。
并联结构机床与传统(串联结构)机床比较,其主要的优点是:运动部件质量轻,运动惯性小,更有利于实现高速度和高加速度的加工;主轴部件具有重复性,通用性高,适于专业化生产;比刚度高,且容易通过预加载荷来提高机床的综合刚度;理论精度较高,一般加工误差不会大于6根伸缩杆运动误差的平均值,不像串联结构的机床那样,各轴运动误差有可能被累积和放大。但并联结构机床也存在一些固有的缺点:有效空间比(即有效加工空间对设备占用空间之比)比较小,而且可加工空间呈非规则形,并随杆长和位姿角变化;?因受球铰和虎克铰链转角的制约,Stewart平台所能倾斜的角度(即刀具的位姿角)较小,一般只有±40°左右(常用为±30°以下),从而影响了可加工的範围;运动和编程较复杂,而且简单的直线运动也要6根杆联合运动来实现;存在非线性误差和奇异性问题,当加工在极限位置上进行时,由于微小的振动误差就有可能导致奇异性出现,即导致旋转轴的180°翻转,这种情况非常危险。
五轴加工的方法和机床,早在20世纪60年代,国外航空工业为了加工一些具有连续平滑而复杂的自由曲面大件时,就已开始采用了,但一直没能在更多的行业中获得广泛应用,只是近10年来才有了较快的发展。究其原因,主要是五轴加工存在着很多难点,譬如:
1、编程复杂、难度大。因为五轴加工不同于三轴,它除了三个直线运动外,还有两个旋转运动参与,其所形成的合成运动的空间轨迹非常复杂和抽象,一般难以想象和理解。如为了加工出所需的空间自由曲面,往往需通过多次坐标变换和复杂的空间几何运算,同时还要考虑各轴运动的协调性,避免干涉、冲撞,以及插补运动要适时适量等,以保证所要求的加工精度和表面质量,编程难度就更大了;
2、对数控及伺服控制系统要求高。由于五轴加工需要有五轴同时协调运动,这就要求数控系统首先必须具有至少五轴联动控制的功能;另外由于合成运动中有旋转运动的加入,这不仅增加了插补运算的工作量,而且由于旋转运动的微小误差有可能被放大从而大大影响加工的精度,因此要求数控系统要有较高的运算速度(即更短的单个程序段的处理时间)和精度。所有这些都意味着数控系统必须增加RISC芯片的处理器来进行处理(即采用多个高位数的CPU结构)。另外如前所说,五轴加工机床的机械配置有刀具旋转方式,工件旋转方式和两者的混合式,数控系统也必须能满足不同配置的要求。最後,为了能实现高速、高精的五轴加工,数控系统还要具有前瞻(Look Ahead)功能和较大的缓冲存储能力,以便在程序执行之前对运动数据进行提前运算、处理并进行多段缓冲存储,从而保证刀具高速运行时误差仍然较小。所有这些要求,无疑都将增加数控系统结构的复杂性和开发的难度;
五轴机床的机械结构设计和制造也比三轴机床更复杂和困难。因为机床要增加两个旋转轴坐标,就必须采用能倾斜和转动的工作台或能转动和摆动的主轴头部件。对增加的这两个部件,既要求其结构紧凑,又要具有足够大的力矩和运动的灵敏性及精度,这显然就比设计和制造普通三轴加工机床难多了;作为上述三项因素综合影响的结果,五轴加工机床的价格比较昂贵,因而在某种程度上也影响了企业对五轴机床的投资。