当短路过渡的电流较大( 100 ~160A) ,复合焊的激光功率100 ~700 W,位于热导焊模式区,激光的作用主要是增加焊接过程稳定性,减少焊接过程的飞溅。图10为不锈钢薄板( 厚度1.5mm) 搭接焊时的焊缝成形,焊接条件为激光功率700 W,电弧电压16 ~17V,焊接电流110 ~120A ,焊接速度2m/min。
当短路过渡的电流较大(100 ~160A) ,复合焊的激光功率900 ~2000 W,位于深熔焊模式区,激光与短路过渡MAG 电弧复合的特点是可以显著增加焊缝的熔深和深宽比,这一特点使得中厚板在多层多道焊时减少坡口角度、提高焊接效率成为可能。图11为采用碳钢材料( 厚度10mm) 单独MAG 焊与激光+ 短路过渡MAG焊时焊缝成形的比较。焊接条件为MAG 焊时,坡口角度60°,电弧电压19 ~22V ,焊接电流165~190A,焊接速度0.5 ~0.6m/min ,4 层焊道完成焊缝的焊接。复合焊接时,坡口角度30°,激光功率2000 W,电弧电压19 ~22V,焊接电流165 ~190A,焊接速度0.5~0.6m/ min,两层焊道完成焊缝的焊接。
( 2) 铝合金材料大功率固体激光( Nd : YAG) + 脉冲MIG 电弧复合热源焊接技术 以5A06 ( LF6) 铝合金为研究对象,研究了铝合金激光+ 电弧复合焊时焊接参数的变化对焊缝熔深的影响规律。研究表明,相同焊接热输入下,复合焊获得的焊缝熔深大于相同电流的脉冲MIG 焊; 获得相同焊缝熔深的条件下,复合焊与相同电流的脉冲MIG 焊相比具有更高的焊接速度、更低的热输入和更小的变形。图12 为相同焊缝熔深条件下,复合焊与单独脉冲MIG 焊时焊速、焊接热输入的比较。
试验还对单独脉冲MIG 焊和激光+ 脉冲MIG 焊的焊缝成形进行了比较分析,研究表明当MIG 电弧热源的功率较小时,由于铝合金焊接导热快,焊丝熔化后难于与母材润湿,仅是堆积在焊缝表面。在电弧的基础上复合一定能量的激光后,降低了焊缝的余高与熔宽比,熔化金属可以与母材良好的润湿。当MIG 电弧热源的功率较大且焊接速度较快时,由于焊缝冷却速度快,熔池金属的表面张力较大,从而造成不连续性的驼峰焊缝。如果在此基础上复合一定功率的激光热源,可以降低焊缝的冷却速度,减少熔池金属的表面张力,从而获得连续的焊缝成形。图13 为5A06 铝合金高速焊接时焊缝外观成形。
( 3) 铝/ 钢大光斑Nd:YAG 激光+ 脉冲MIG 复合热源高效熔- 钎焊接技术 基于激光+ 电弧复合热源焊接过程中,激光能量精确可调并且激光具有稳定电弧、改善焊接过程稳定性、提高焊接速度等特点,提出了大光斑激光- 电弧复合热源焊接异种金属的方法。利用大光斑Nd:YAG 激光+ 脉冲MIG 复合热源焊接实现了5A02铝合金板与冷轧热镀锌钢板、冷轧热镀铝钢板的优质高效熔- 钎连接( 铝母材为熔化焊,焊缝与钢母材为钎焊连接) ,最高焊接速度可达5.0m/ min,拉伸试样的断裂位置发生在铝母材热影响区,接头的最大抗拉强度可达5A02 铝合金母材抗拉强度的75% 左右,接近于5A02 铝合金普通熔化焊接头的强度。X 射线衍射分析表明,铝/ 钢熔- 钎连接接头钎焊连接界面处生成了Fe3Al 、FeAl2 、Fe2Al5及FeAl3金属间化合物,化合物层的厚度在1.5~4μm 范围内,Al- Fe 金属间化合物层的存在对接头的强度影响不大;能谱分析表明,接头钎焊连接界面处Al 、Fe 原子扩散充分。
图14 为采用大光斑Nd:YAG 激光+ 脉冲MIG 复合热源高效熔- 钎焊接技术焊接的5A02 铝合金板与冷轧热镀锌钢板的焊缝。
2. 激光+ 电弧复合热源焊接技术的应用
哈尔滨焊接研究所已经成功地将研究开发的激光+电弧复合热源焊接技术应用到了实际产品的生产中,典型的产品有不锈钢大型显示屏壳体( 厚度1.5mm,尺寸900mm×650mm×160mm) 焊接,有效地解决了大型薄壁构件的焊接变形问题;高强钢及超高强钢减震器钢体与筒体( 强度1000 ~1780MPa,厚度12 ~25mm) 的焊接,有效地解决了焊接裂纹以及缸体内层镀铬层的烧损及构件的变形问题。图15为采用激光+ 电弧复合热源焊接技术焊接减震器缸体。哈尔滨焊接研究所还成功的用激光+ 电弧复合热源焊接技术解决了不锈钢双面复合板(不锈钢复合层的厚度在0.15mm 左右,材料为0Cr18Ni9Ti ,基<