图1 高精度伺服控制成型机械手
2.2 伺服系统 本项目机械手是单轴结构的机械手,基本的硬件配置分为控制部分和驱动部分。 (1)控制器。控制器由单片机开发而成的手持式控制系统,采用模拟量控制伺服驱动器 (2)驱动器。 台达ASD-A0421LA伺服驱动器+ECMA-C3060402ES伺服电机,也就是台达伺服的ASD-A的驱动器驱动和ASD-B的电机的A+B的配置。 (3)传动结构。伺服与负载之间的传动结构是采用5:1减速机和 T型齿型钢丝PU皮带传 动。 (4)系统框图。伺服控制系统框图设计参见图2。
图2 伺服控制系统框图
3 伺服运动稳定性调试调试 首先使用台达调试软件估测出负载惯量比为68.6,在这样的惯量情况下要实现伺服的高速响应,必须要提高伺服增益以保证伺服的控制机能,但是在将增益调整到一定的高度以后就必然会出现机械共振,至于通过FFT软件抓取了机械共振点在189 Hz 的频率附近,所以,设定了陷波滤波器的频率为189Hz和衰减率为4db以后,可以将伺服的速度控制增益调高到5000rad/s以上。 但是在这样的增益下,电机运行特性仍然很不好,电机在定位时出现反复震荡,不能快速定位,只能继续拉高速度控制增益,但是在增大速度控制增益的时候,由于电流饱和而使电机又出现了震动,在这样的情况下只能将共振低通滤波和外部干扰抵抗增益降低。这样就把速度控制增益提高到7000rad/s以上。伺服可以快速而准确的定位,不再反复震荡。 图3、图4两条曲线是由ASD-A伺服调试软件抓取得实时曲线,在这样的运行情况,伺服的运行并不平稳,伺服的运行情况是,在加速时电机会出现高速加速,伺服以1600rpm速度运行,在运行到中间时伺服会出现一个明显加速过程,伺服的运行速度在1000rpm左右,这样的运行情况是无法满足客户的要求的。
图3 控制器速度命令曲线1
图4 电机运行速度曲线1
通过观察两条曲线(控制器速度命令曲线1和电机运行速度曲线1)可以发现,伺服电机几乎是完全按照上位机速度运行命令在运动的,可是,为什么会出现这种加减速过程呢? 通过与其他工程师沟通和共同研究,发现由于负载惯量过大,造成伺服速度响应不够快,使得速度误差过大,所以伺服在不断的针对速度误差进行积分整定,而该机械手控制器在作位置控制的时候接受伺服编码器信号作积分整定的积分环节时,控制器在采